Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Atmospheric Measurement Techniques ; 16(8):2237-2262, 2023.
Article in English | ProQuest Central | ID: covidwho-2304944

ABSTRACT

Nitrogen dioxide (NO2) air pollution provides valuable information for quantifying NOx (NOx = NO + NO2) emissions and exposures. This study presents a comprehensive method to estimate average tropospheric NO2 emission strengths derived from 4-year (May 2018–June 2022) TROPOspheric Monitoring Instrument (TROPOMI) observations by combining a wind-assigned anomaly approach and a machine learning (ML) method, the so-called gradient descent algorithm. This combined approach is firstly applied to the Saudi Arabian capital city of Riyadh, as a test site, and yields a total emission rate of 1.09×1026 molec. s-1. The ML-trained anomalies fit very well with the wind-assigned anomalies, with an R2 value of 1.0 and a slope of 0.99. Hotspots of NO2 emissions are apparent at several sites: over a cement plant and power plants as well as over areas along highways. Using the same approach, an emission rate of 1.99×1025 molec. s-1 is estimated in the Madrid metropolitan area, Spain. Both the estimate and spatial pattern are comparable with the Copernicus Atmosphere Monitoring Service (CAMS) inventory.Weekly variations in NO2 emission are highly related to anthropogenic activities, such as the transport sector. The NO2 emissions were reduced by 16 % at weekends in Riyadh, and high reductions were found near the city center and in areas along the highway. An average weekend reduction estimate of 28 % was found in Madrid. The regions with dominant sources are located in the east of Madrid, where residential areas and the Madrid-Barajas airport are located. Additionally, due to the COVID-19 lockdowns, the NO2 emissions decreased by 21 % in March–June 2020 in Riyadh compared with the same period in 2019. A much higher reduction (62 %) is estimated for Madrid, where a very strict lockdown policy was implemented. The high emission strengths during lockdown only persist in the residential areas, and they cover smaller areas on weekdays compared with weekends. The spatial patterns of NO2 emission strengths during lockdown are similar to those observed at weekends in both cities. Although our analysis is limited to two cities as test examples, the method has proven to provide reliable and consistent results. It is expected to be suitable for other trace gases and other target regions. However, it might become challenging in some areas with complicated emission sources and topography, and specific NO2 decay times in different regions and seasons should be taken into account. These impacting factors should be considered in the future model to further reduce the uncertainty budget.

2.
Journal of Geophysical Research Atmospheres ; 128(8), 2023.
Article in English | ProQuest Central | ID: covidwho-2297385

ABSTRACT

This study has produced an improved percentile and seasonal (median) trend estimate of free tropospheric ozone above western North America (WNA), through a data fusion of ozonesonde, lidar, commercial aircraft, and field campaign measurements. Our method combines heterogeneous data sets according to the consensus data characteristics and inherent uncertainty in order to produce our best fused product. In response to different data collection environments (in situ or ground‐based), we investigate the ozone variability based on a wide range of percentiles, which is preferable for trend detection due to tropospheric ozone's high degree of heteroscedasticity (i.e., inconsistent trends and variability between different ozone percentiles). We then compare the ozone trends and variability above the California sub‐domain to the full WNA region for better understanding of the correlations between different regional scales. In California, the 1995–2021 percentile (from the 5th to 95th) and seasonal trends are clearly positive in terms of high signal‐to‐noise ratios. The magnitude of the trends is generally weaker over WNA compared to California, but reliable positive trends can still be found between the 10th and 70th percentiles, as well as winter and summer, whereas autumn shows a negative trend over the same period. In addition, dozens of rural surface sites across the region are selected to represent the boundary layer variability. In contrast to increasing free tropospheric ozone, we find overall strong negative surface trends since 1995, with the greatest divergence found in summer. Throughout the analysis implications of the COVID‐19 economic downturn on ozone variability are discussed.Alternate :Plain Language SummaryFree tropospheric ozone above western North America has increased since the mid‐1990s. Despite an observed drop of ozone in 2020 due to the COVID‐19 economic downturn, this observation‐based study shows the overall free tropospheric ozone trends have not been offset and continued to increase over 1995–2021, mainly driven by strong positive trends in winter and summer. In combination with the strong negative trends observed at rural surface sites over the same period, this study adds to the growing body of evidence that surface trends are frequently disconnected from the general increases observed in the free troposphere.

3.
Atmospheric Chemistry and Physics ; 23(7):3905-3935, 2023.
Article in English | ProQuest Central | ID: covidwho-2276300

ABSTRACT

In orbit since late 2017, the Tropospheric Monitoring Instrument (TROPOMI) is offering new outstanding opportunities for better understanding the emission and fate of nitrogen dioxide (NO2) pollution in the troposphere. In this study, we provide a comprehensive analysis of the spatio-temporal variability of TROPOMI NO2 tropospheric columns (TrC-NO2) over the Iberian Peninsula during 2018–2021, considering the recently developed Product Algorithm Laboratory (PAL) product. We complement our analysis with estimates of NOx anthropogenic and natural soil emissions. Closely related to cloud cover, the data availability of TROPOMI observations ranges from 30 %–45 % during April and November to 70 %–80 % during summertime, with strong variations between northern and southern Spain. Strongest TrC-NO2 hotspots are located over Madrid and Barcelona, while TrC-NO2 enhancements are also observed along international maritime routes close the strait of Gibraltar, and to a lesser extent along specific major highways. TROPOMI TrC-NO2 appear reasonably well correlated with collocated surface NO2 mixing ratios, with correlations around 0.7–0.8 depending on the averaging time.We investigate the changes of weekly and monthly variability of TROPOMI TrC-NO2 depending on the urban cover fraction. Weekly profiles show a reduction of TrC-NO2 during the weekend ranging from -10 % to -40 % from least to most urbanized areas, in reasonable agreement with surface NO2. In the largest agglomerations like Madrid or Barcelona, this weekend effect peaks not in the city center but in specific suburban areas/cities, suggesting a larger relative contribution of commuting to total NOx anthropogenic emissions. The TROPOMI TrC-NO2 monthly variability also strongly varies with the level of urbanization, with monthly differences relative to annual mean ranging from -40 % in summer to +60 % in winter in the most urbanized areas, and from -10 % to +20 % in the least urbanized areas. When focusing on agricultural areas, TROPOMI observations depict an enhancement in June–July that could come from natural soil NO emissions. Some specific analysis of surface NO2 observations in Madrid show that the relatively sharp NO2 minimum used to occur in August (drop of road transport during holidays) has now evolved into a much broader minimum partly de-coupled from the observed local road traffic counting;this change started in 2018, thus before the COVID-19 outbreak. Over 2019–2021, a reasonable consistency of the inter-annual variability of NO2 is also found between both datasets.Our study illustrates the strong potential of TROPOMI TrC-NO2 observations for complementing the existing surface NO2 monitoring stations, especially in the poorly covered rural and maritime areas where NOx can play a key role, notably for the production of tropospheric O3.

4.
Atmospheric and Oceanic Optics ; 35(6):732-740, 2022.
Article in English | Web of Science | ID: covidwho-2235910

ABSTRACT

We present the results from monitoring surface ozone in the atmosphere of Moscow in 2020 and 2021 under lockdown conditions linked to the COVID-19 pandemic. These two years significantly differed in meteorological conditions and the level of anthropogenic environmental load. A level of surface O-3 concentrations, relatively low for a megalopolis, was observed in Moscow in 2020. The annual average concentration was 28 mu g/m(3), and the annual maximal concentration was 185 mu g/m(3). That was due to relatively cool summer with the low content of pollutants in atmospheric air. Intense heat waves were observed in the megalopolis during summer 2021 under the conditions of a blocking anticyclone, when the daytime temperatures rose to 35 & DEG;C. Combined with higher atmospheric air pollution, this resulted in unusually high O-3 concentrations. The annual average concentration was 48 mu g/m(3), and the annual maximal concentration was 482 mu g/m(3).

5.
Understanding the Origin and Global Spread of COVID-19 ; : 105-108, 2022.
Article in English | Scopus | ID: covidwho-2206385

ABSTRACT

We propose that a reservoir of respiratory viruses in clumps of micro-sized dust exists in tropospheric clouds from which virions can be seasonally released into the lower atmosphere and thence to ground level. Respiratory Syncytial Virus (RSV), Seasonal Influenza and Human Para Influenza Virus (HPIV) are all diseases that fall in this category, including SARS-CoV-2. The seasonal incidence of disease at ground level would appear to be patchy over distance scales that are largely dictated by viral-laden dust cloud size modulated by scales of atmospheric turbulence. This could produce clustering of cases in space and time that has given rise to ‘contagion' concepts of community spread and of superspreaders. © 2022 by World Scientific Publishing Co. Pte. Ltd.

6.
Atmospheric and Oceanic Optics ; 35(6):732-740, 2022.
Article in English | Scopus | ID: covidwho-2193594

ABSTRACT

: We present the results from monitoring surface ozone in the atmosphere of Moscow in 2020 and 2021 under lockdown conditions linked to the COVID-19 pandemic. These two years significantly differed in meteorological conditions and the level of anthropogenic environmental load. A level of surface O3 concentrations, relatively low for a megalopolis, was observed in Moscow in 2020. The annual average concentration was 28 μg/m3, and the annual maximal concentration was 185 μg/m3. That was due to relatively cool summer with the low content of pollutants in atmospheric air. Intense heat waves were observed in the megalopolis during summer 2021 under the conditions of a blocking anticyclone, when the daytime temperatures rose to 35°C. Combined with higher atmospheric air pollution, this resulted in unusually high O3 concentrations. The annual average concentration was 48 μg/m3, and the annual maximal concentration was 482 μg/m3. © 2022, Pleiades Publishing, Ltd.

7.
Atmospheric Chemistry and Physics ; 22(22):15135-15151, 2022.
Article in English | ProQuest Central | ID: covidwho-2144700

ABSTRACT

Sulfur compounds in the upper troposphere and lower stratosphere (UTLS) impact the atmosphere radiation budget, either directly as particles or indirectly as precursor gas for new particle formation. In situ measurements in the UTLS are rare but are important to better understand the impact of the sulfur budget on climate. The BLUESKY mission in May and June 2020 explored an unprecedented situation. (1) The UTLS experienced extraordinary dry conditions in spring 2020 over Europe, in comparison to previous years, and (2) the first lockdown of the COVID-19 pandemic caused major emission reductions from industry, ground, and airborne transportation. With the two research aircraft HALO and Falcon, 20 flights were conducted over central Europe and the North Atlantic to investigate the atmospheric composition with respect to trace gases, aerosol, and clouds. Here, we focus on measurements of sulfur dioxide (SO2) and particulate sulfate (SO42-) in the altitude range of 8 to 14.5 km which show unexpectedly enhanced mixing ratios of SO2 in the upper troposphere and of SO42- in the lowermost stratosphere. In the UT, we find SO2 mixing ratios of (0.07±0.01) ppb, caused by the remaining air traffic, and reduced SO2 sinks due to low OH and low cloud fractions and to a minor extent by uplift from boundary layer sources. Particulate sulfate showed elevated mixing ratios of up to 0.33 ppb in the LS. We suggest that the eruption of the volcano Raikoke in June 2019, which emitted about 1 Tg SO2 into the stratosphere in northern midlatitudes, caused these enhancements, in addition to Siberian and Canadian wildfires and other minor volcanic eruptions. Our measurements can help to test models and lead to new insights in the distribution of sulfur compounds in the UTLS, their sources, and sinks. Moreover, these results can contribute to improving simulations of the radiation budget in the UTLS with respect to sulfur effects.

8.
Bulletin of the American Meteorological Society ; 103(8):E1796-E1827, 2022.
Article in English | Web of Science | ID: covidwho-2123275

ABSTRACT

During spring 2020, the COVID-19 pandemic caused massive reductions in emissions from industry and ground and airborne transportation. To explore the resulting atmospheric composition changes, we conducted the BLUESKY campaign with two research aircraft and measured trace gases, aerosols, and cloud properties from the boundary layer to the lower stratosphere. From 16 May to 9 June 2020, we performed 20 flights in the early COVID-19 lockdown phase over Europe and the Atlantic Ocean. We found up to 50% reductions in boundary layer nitrogen dioxide concentrations in urban areas from GOME-2B satellite data, along with carbon monoxide reductions in the pollution hot spots. We measured 20%-70% reductions in total reactive nitrogen, carbon monoxide, and fine mode aerosol concentration in profiles over German cities compared to a 10-yr dataset from passenger aircraft. The total aerosol mass was significantly reduced below 5 km altitude, and the organic aerosol fraction also aloft, indicative of decreased organic precursor gas emissions. The reduced aerosol optical thickness caused a perceptible shift in sky color toward the blue part of the spectrum (hence BLUESKY) and increased shortwave radiation at the surface. We find that the 80% decline in air traffic led to substantial reductions in nitrogen oxides at cruise altitudes, in contrail cover, and in resulting radiative forcing. The light extinction and depolarization by cirrus were also reduced in regions with substantially decreased air traffic. General circulation-chemistry model simulations indicate good agreement with the measurements when applying a reduced emission scenario. The comprehensive BLUESKY dataset documents the major impact of anthropogenic emissions on the atmospheric composition.

9.
Meteorology and Atmospheric Physics ; 134(6), 2022.
Article in English | ProQuest Central | ID: covidwho-2059862

ABSTRACT

This study seeks to understand and quantify the changes in tropospheric ozone (O3) in lower troposphere (LT), middle troposphere (MT) and upper middle troposphere (UMT) over the Indo-Gangetic Plains (IGPs), India during the COVID-19 lockdown 2020 with that of pre-lockdown 2019. The gridded datasets of ozone from the European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis product, ERA5 in combination with statistical interpolated (IDWs) surface NO2 observations, present a consistent picture and indicate a significant tropospheric ozone enhancement over IGP during COVID-19 lockdown restrictions in May 2020. The Paper also examines the influencing role of meteorological parameters on increasing ozone concentration. Over LT, an increase in O3 concentration (23%) is observed and in MT to UMT an enhancement of about 9–18% in O3 concentration have been seen during May 2020 with respect to May 2019. An investigation on causes of increasing  ozone concentration (35–85 ppbv) from MT to UMT during May 2020 reveals that there was significant rise (by 1–6%) in low cloud cover (LCC). Notably, higher LCC increases the backscattering of upward solar radiation from the top of the atmosphere. A positive difference of 5–25 W/m2 in upward solar radiation (USR) is observed across the entire study region. The result suggests that higher LCC significantly contributed to the enhanced USR. Thereby, resulting in higher photolysis rate that lead to an increase in mid tropospheric ozone concentration during May 2020. The results highlight the importance of LCC as an important pathway in ozone formation and aid in scientific understanding of it.

10.
Atmospheric Chemistry and Physics ; 22(18):12705-12726, 2022.
Article in English | ProQuest Central | ID: covidwho-2056005

ABSTRACT

This study investigated the spatiotemporal variabilities in nitrogen dioxide (NO2), formaldehyde (HCHO), ozone (O3), and light-absorbing aerosols within the Greater Tokyo Area, Japan, which is the most populous metropolitan area in the world. The analysis is based on total tropospheric column, partial tropospheric column (within the boundary layer), and in situ observations retrieved from multiple platforms as well as additional information obtained from reanalysis and box model simulations. This study mainly covers the 2013–2020 period, focusing on 2020 when air quality was influenced by the coronavirus 2019 (COVID-19) pandemic. Although total and partial tropospheric NO2 columns were reduced by an average of about 10 % in 2020, reductions exceeding 40 % occurred in some areas during the pandemic state of emergency. Light-absorbing aerosol levels within the boundary layer were also reduced for most of 2020, while smaller fluctuations in HCHO and O3 were observed. The significantly enhanced degree of weekly cycling of NO2, HCHO, and light-absorbing aerosol found in urban areas during 2020 suggests that, in contrast to other countries, mobility in Japan also dropped on weekends. We conclude that, despite the lack of strict mobility restrictions in Japan, widespread adherence to recommendations designed to limit the COVID-19 spread resulted in unique air quality improvements.

11.
Atmospheric Chemistry and Physics ; 22(16):10919-10935, 2022.
Article in English | ProQuest Central | ID: covidwho-2025098

ABSTRACT

Around 5 % of anthropogenic radiative forcing (RF) is attributed to aviation CO2 and non-CO2 impacts. This paper quantifies aviation emissions and contrail climate forcing in the North Atlantic, one of the world's busiest air traffic corridors, over 5 years. Between 2016 and 2019, growth in CO2 (+3.13% yr-1) and nitrogen oxide emissions (+4.5 % yr-1) outpaced increases in flight distance (+3.05 % yr-1). Over the same period, the annual mean contrail cirrus net RF (204–280 mW m-2) showed significant inter-annual variability caused by variations in meteorology. Responses to COVID-19 caused significant reductions in flight distance travelled (-66%), CO2 emissions (-71%) and the contrail net RF (-66%) compared with the prior 1-year period. Around 12 % of all flights in this region cause 80 % of the annual contrail energy forcing, and the factors associated with strongly warming/cooling contrails include seasonal changes in meteorology and radiation, time of day, background cloud fields, and engine-specific non-volatile particulate matter (nvPM) emissions. Strongly warming contrails in this region are generally formed in wintertime, close to the tropopause, between 15:00 and 04:00 UTC, and above low-level clouds. The most strongly cooling contrails occur in the spring, in the upper troposphere, between 06:00 and 15:00 UTC, and without lower-level clouds. Uncertainty in the contrail cirrus net RF (216–238 mW m-2) arising from meteorology in 2019 is smaller than the inter-annual variability. The contrail RF estimates are most sensitive to the humidity fields, followed by nvPM emissions and aircraft mass assumptions. This longitudinal evaluation of aviation contrail impacts contributes a quantified understanding of inter-annual variability and informs strategies for contrail mitigation.

12.
Atmospheric Chemistry and Physics ; 22(16):10875-10900, 2022.
Article in English | ProQuest Central | ID: covidwho-2025096

ABSTRACT

The Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor (S5P) satellite is a valuable source of information to monitor the NOx emissions that adversely affect air quality. We conduct a series of experiments using a 4×4 km2 Comprehensive Air Quality Model with Extensions (CAMx) simulation during April–September 2019 in eastern Texas to evaluate the multiple challenges that arise from reconciling the NOx emissions in model simulations with TROPOMI. We find an increase in NO2 (+17 % in urban areas) when transitioning from the TROPOMI NO2 version 1.3 algorithm to the version 2.3.1 algorithm in eastern Texas, with the greatest difference (+25 %) in the city centers and smaller differences (+5 %) in less polluted areas. We find that lightningNOx emissions in the model simulation contribute up to 24 % of the column NO2 in the areas over the Gulf of Mexico and 8% in Texas urban areas. NOx emissions inventories, when using locally resolved inputs, agree with NOx emissions derived from TROPOMI NO2 version 2.3.1 to within 20 % in most circumstances, with a small NOx underestimate in Dallas–Fort Worth (-13 %) and Houston (-20 %). In the vicinity of large power plant plumes (e.g., Martin Lake and Limestone) we find larger disagreements, i.e., the satellite NO2 is consistently smaller by 40 %–60 % than the modeled NO2, which incorporates measured stack emissions. We find that TROPOMI is having difficulty distinguishingNO2 attributed to power plants from the background NO2 concentrations in Texas – an area with atmospheric conditions that cause short NO2 lifetimes. Second, the NOx/NO2 ratio in the model may be underestimated due to the 4 km grid cell size. To understand ozone formation regimes in the area, we combine NO2 column information with formaldehyde (HCHO) column information. We find modest low biases in the model relative to TROPOMI HCHO, with -9 % underestimate in eastern Texas and -21 % in areas of central Texas with lower biogenic volatile organic compound (VOC) emissions. Ozone formation regimes at the time of the early afternoon overpass are NOx limited almost everywhere in the domain, except along the Houston Ship Channel, near the Dallas/Fort Worth International airport, and in the presence of undiluted power plant plumes. There are likely NOx-saturated ozone formation conditions in the early morning hours that TROPOMI cannot observe and would be well-suited for analysis with NO2 and HCHO from the upcoming TEMPO (Tropospheric Emissions: Monitoring Pollution) mission. This study highlights that TROPOMI measurements offer a valuable means to validate emissions inventories and ozone formation regimes, with important limitations.

13.
Atmos Environ (1994) ; : 119367, 2022 Sep 05.
Article in English | MEDLINE | ID: covidwho-2007457

ABSTRACT

We present the first NO2 measurements from the Nadir Mapper of Ozone Mapping and Profiler Suite (OMPS) instrument aboard the NOAA-20 satellite. NOAA-20 OMPS was launched in November 2017, with a nadir resolution of 17 × 13 km2 similar to the Ozone Monitoring Instrument (OMI). The retrieval of NOAA-20 NO2 vertical columns were achieved through the Direct Vertical Column Fitting (DVCF) algorithm, which was uniquely designed and successfully used to retrieve NO2 from OMPS aboard Suomi National Polar-orbiting Partnership (SNPP) spacecraft, predecessor to NOAA-20. Observations from NOAA-20 reveal a 20-40% decline in regional tropospheric NO2 in January-April 2020 due to COVID-19 lockdown, consistent with the findings from other satellite observations. The NO2 retrievals are preliminarily validated against ground-based Pandora spectrometer measurements over the New York City area as well as other U.S. Pandora locations. It shows OMPS total columns tend to be lower in polluted urban regions and higher in clean areas/episodes associated with relatively small NO2 total columns, but generally the agreement is within ±2.5 × 1015 molecules/cm2. Comparisons of stratospheric NO2 columns exhibit the excellent agreement between OMPS and OMI, validating OMPS capability in capturing the stratospheric background accurately. These results demonstrate the high sensitivity of OMPS to tropospheric NO2 and highlight its potential use for extending the long-term global NO2 record.

14.
Atmospheric Chemistry and Physics ; 22(15):10319-10351, 2022.
Article in English | ProQuest Central | ID: covidwho-1994379

ABSTRACT

The aim of this paper is to highlight how TROPOspheric Monitoring Instrument (TROPOMI) trace gas data can best be used and interpreted to understand event-based impacts on air quality from regional to city scales around the globe. For this study, we present the observed changes in the atmospheric column amounts of five trace gases (NO2, SO2, CO, HCHO, and CHOCHO) detected by the Sentinel-5P TROPOMI instrument and driven by reductions in anthropogenic emissions due to COVID-19 lockdown measures in 2020. We report clear COVID-19-related decreases in TROPOMI NO2 column amounts on all continents. For megacities, reductions in column amounts of tropospheric NO2 range between 14 % and 63 %. For China and India, supported by NO2 observations, where the primary source of anthropogenic SO2 is coal-fired power generation, we were able to detect sector-specific emission changes using the SO2 data. For HCHO and CHOCHO, we consistently observe anthropogenic changes in 2-week-averaged column amounts over China and India during the early phases of the lockdown periods. That these variations over such a short timescale are detectable from space is due to the high resolution and improved sensitivity of the TROPOMI instrument. For CO, we observe a small reduction over China, which is in concert with the other trace gas reductions observed during lockdown;however, large interannual differences prevent firm conclusions from being drawn. The joint analysis of COVID-19-lockdown-driven reductions in satellite-observed trace gas column amounts using the latest operational and scientific retrieval techniques for five species concomitantly is unprecedented. However, the meteorologically and seasonally driven variability of the five trace gases does not allow for drawing fully quantitative conclusions on the reduction in anthropogenic emissions based on TROPOMI observations alone. We anticipate that in future the combined use of inverse modeling techniques with the high spatial resolution data from S5P/TROPOMI for all observed trace gases presented here will yield a significantly improved sector-specific, space-based analysis of the impact of COVID-19 lockdown measures as compared to other existing satellite observations. Such analyses will further enhance the scientific impact and societal relevance of the TROPOMI mission.

15.
Atmospheric Chemistry and Physics ; 22(14):9483-9497, 2022.
Article in English | ProQuest Central | ID: covidwho-1954573

ABSTRACT

In this work we present airborne in situ trace gas observations of hydrogen peroxide (H2O2) and the sum of organic hydroperoxides over Europe during the Chemistry of the Atmosphere – Field Experiments in Europe (CAFE-EU, also known as BLUESKY) aircraft campaign using a wet chemical monitoring system, the HYdrogen Peroxide and Higher Organic Peroxide (HYPHOP) monitor. The campaign took place in May–June 2020 over central and southern Europe with two additional flights dedicated to the North Atlantic flight corridor. Airborne measurements were performed on the High Altitude and LOng-range (HALO) research operating out of Oberpfaffenhofen (southern Germany). We report average mixing ratios for H2O2 of 0.32 ± 0.25, 0.39 ± 0.23 and 0.38 ± 0.21 ppbv in the upper and middle troposphere and the boundary layer over Europe, respectively. Vertical profiles of measured H2O2 reveal a significant decrease, in particular above the boundary layer, contrary to previous observations, most likely due to cloud scavenging and subsequent rainout of soluble species. In general, the expected inverted C-shaped vertical trend with maximum hydrogen peroxide mixing ratios at 3–7 km was not found during BLUESKY. This deviates from observations during previous airborne studies over Europe, i.e., 1.64 ± 0.83 ppbv during the HOOVER campaign and 1.67 ± 0.97 ppbv during UTOPIHAN-ACT II/III. Simulations with the global chemistry–transport model EMAC partly reproduce the strong effect of rainout loss on the vertical profile of H2O2. A sensitivity study without H2O2 scavenging performed using EMAC confirms the strong influence of clouds and precipitation scavenging on hydrogen peroxide concentrations. Differences between model simulations and observations are most likely due to difficulties in the simulation of wet scavenging processes due to the limited model resolution.

16.
Atmosphere ; 13(5):840, 2022.
Article in English | ProQuest Central | ID: covidwho-1871343

ABSTRACT

In this article, we aim to show the capabilities, benefits, as well as restrictions, of three different air quality-related information sources, namely the Sentinel-5Precursor TROPOspheric Monitoring Instrument (TROPOMI) space-born observations, the Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) ground-based measurements and the LOng Term Ozone Simulation-EURopean Operational Smog (LOTOS-EUROS) chemical transport modelling system simulations. The tropospheric NO2 concentrations between 2018 and 2021 are discussed as air quality indicators for the Greek cities of Thessaloniki and Ioannina. Each dataset was analysed in an autonomous manner and, without disregarding their differences, the common air quality picture that they provide is revealed. All three systems report a clear seasonal pattern, with high NO2 levels during wintertime and lower NO2 levels during summertime, reflecting the importance of photochemistry in the abatement of this air pollutant. The spatial patterns of the NO2 load, obtained by both space-born observations and model simulations, show the undeniable variability of the NO2 load within the urban agglomerations. Furthermore, a clear diurnal variability is clearly identified by the ground-based measurements, as well as a Sunday minimum NO2 load effect, alongside the rest of the sources of air quality information. Within their individual strengths and limitations, the space-borne observations, the ground-based measurements, and the chemical transport modelling simulations demonstrate unequivocally their ability to report on the air quality situation in urban locations.

17.
Environmental Research Letters ; 17(6):063003, 2022.
Article in English | ProQuest Central | ID: covidwho-1864161

ABSTRACT

Ozone (O3) in the troposphere is an air pollutant and a greenhouse gas. In mainland China, after the Air Pollution Prevention and Action Plan was implemented in 2013—and despite substantial decreases in the concentrations of other air pollutants—ambient O3 concentrations paradoxically increased in many urban areas. The worsening urban O3 pollution has fuelled numerous studies in recent years, which have enriched knowledge about O3-related processes and their impacts. In this article, we synthesise the key findings of over 500 articles on O3 over mainland China that were published in the past six years in English-language journals. We focus on recent changes in O3 concentrations, their meteorological and chemical drivers, complex O3 responses to the drastic decrease in human activities during coronavirus disease 2019 lockdowns, several emerging chemical processes, impacts on crops and trees, and the latest government interventions.

18.
Atmospheric Chemistry and Physics ; 22(9):6151-6165, 2022.
Article in English | ProQuest Central | ID: covidwho-1841631

ABSTRACT

The COVID-19 (coronavirus disease 2019) European lockdowns have led to a significant reduction in the emissions of primary pollutants such as NO (nitric oxide) and NO2 (nitrogen dioxide). As most photochemical processes are related to nitrogen oxide (NOx≡ NO + NO2) chemistry, this event has presented an exceptional opportunity to investigate its effects on air quality and secondary pollutants, such as tropospheric ozone (O3). In this study, we present the effects of the COVID-19 lockdown on atmospheric trace gas concentrations, net ozone production rates (NOPRs) and the dominant chemical regime throughout the troposphere based on three different research aircraft campaigns across Europe. These are the UTOPIHAN (Upper Tropospheric Ozone: Processes Involving HOx and NOx) campaigns in 2003 and 2004, the HOOVN1 -https://media.proquest.com/media/hms/PFT/1/Q2apM?_a=ChgyMDIyMDUxMzEyMzUwMjMzMTo1MjAyODASBTg4MjU5GgpPTkVfU0VBUkNIIg4xNTguMTExLjIzNi45NSoGMTA1NzQ0MgoyNjYxNzQxNzE2Og1Eb2N1bWVudEltYWdlQgEwUgZPbmxpbmVaAkZUYgNQRlRqCjIwMjIvMDUvMDFyCjIwMjIvMDUvMTR6AIIBKVAtMTAwNzg1Mi0yNjcyNC1DVVNUT01FUi0xMDAwMDI1NS01NzY0MzExkgEGT25saW5lygFzTW96aWxsYS81LjAgKFdpbmRvd3MgTlQgMTAuMDsgV2luNjQ7IHg2NCkgQXBwbGVXZWJLaXQvNTM3LjM2IChLSFRNTCwgbGlrZSBHZWNrbykgQ2hyb21lLzEwMS4wLjQ5NTEuNjQgU2FmYXJpLzUzNy4zNtIBElNjaG9sYXJseSBKb3VybmFsc5oCB1ByZVBhaWSqAitPUzpFTVMtTWVkaWFMaW5rc1NlcnZpY2UtZ2V0TWVkaWFVcmxGb3JJdGVtygIPQXJ0aWNsZXxGZWF0dXJl0gIBWfICAPoCAVmCAwNXZWKKAxxDSUQ6MjAyMjA1MTMxMjM1MDIzMzE6OTE2ODk3&_s=4R%2BrSLBAOWkAv60BD6umfsLkEuQ%3D

19.
Atmospheric Environment ; 277, 2022.
Article in English | EMBASE | ID: covidwho-1797154

ABSTRACT

Nitrogen oxides (NOx = NO + NO2) are key precursors of tropospheric ozone (O3) together with volatile organic compounds (VOC) and carbon monoxide (CO). Since O3 has positive radiative forcing and is harmful to human health, the reduction of anthropogenic emissions of NOx is thought to be beneficial from the perspectives of climate change and air pollution in principle. However, there have been discussions contending that the reduction of NOx emissions is not necessarily beneficial for the mitigation of climate change and improvement of air quality, since 1) it decreases the atmospheric mixing ratio of hydroxyl radicals (OH), which increases the atmospheric lifetime of methane (CH4), and 2) O3 formation is VOC-limited in urban areas and the decrease of NOx emission would increases urban O3 by facilitating the NO titration effect. In order to scrutinize such discussion, literature review have been made on the temporal variations of the increasing rate of tropospheric CH4 in the last 30 years, and on urban/rural O3 issues related to the NOx-limited/VOC-limited regime. Based on the review, it may be concluded that the variation of emissions of CH4 itself paly a dominant role, and the variation of consumption rate by OH play a minor role for the recent variation of CH4. It has been suggested that NOx and NMVOC should be reduced simultaneously in order to avoid the adverse effect on climate change mitigation. From the review on policy-related discussion of NOx-limited and VOC-limited O3 formation, the increase of O3 by the decrease in NOx emissions has generally been seen in winter and nighttime when photochemical production is minimal, and the higher percentile or diurnal maximum mixing ratios of O3 in summer tends to decrease with the decrease in NOx emissions. We suggested that the NOx-limited/VOC-limited approach is not appropriate as a long-term policy guideline for ozone control, since it is unreasonable that NOx reduction is not recommended when ambient NOx levels are high, while further NOx reduction is recommended only when the VOC/NOx ratio gets high after NOx control has been achieved based on other policy principle. Simultaneous reduction of NOx and NMVOC would be beneficial for reducing global, regional, and urban O3 to alleviate climate change and human health impacts. The ultimate reduction of anthropogenic emissions of NOx can be envisioned toward a denitrified (de-NOx) society along with a decarbonized (de-CO2) society.

20.
Remote Sensing ; 14(7), 2022.
Article in English | Scopus | ID: covidwho-1792560

ABSTRACT

We present tropospheric nitrogen dioxide (NO2) changes observed by the Canadian Pandora measurement program in the Greater Toronto Area (GTA), Canada, and compare the results with surface NO2 concentrations measured via in situ instruments to assess the local emission changes during the first two years of the COVID‐19 pandemic. In the City of Toronto, the first lock-down period started on 15 March 2020, and continued until 24 June 2020. ECMWF Reanalysis v5 (ERA‐5) wind information was used to facilitate the data analysis and reveal detailed local emission changes from different areas of the City of Toronto. Evaluating seven years of Pandora observations, a clear NO2 reduction was found, especially from the more polluted downtown Toronto and airport areas (e.g., declined by 35% to 40% in 2020 compared to the 5‐year mean value from these areas) during the first two years of the pandemic. Compared to the sharp decline in NO2 emissions in 2020, the atmospheric NO2 levels in 2021 started to recover, but are still below the mean values in pre-pandemic time. For some sites, the pre‐pandemic NO2 local morning rush hour peak has still not returned in 2021, indicating a change in local traffic and commuter patterns. The long‐term (12 years) surface air quality record shows a statistically significant decline in NO2 with and without April to September 2020 observations (trend of −4.1%/yr and −3.9%/yr, respectively). Even considering this long‐term negative trend in NO2, the observed NO2 reduction (from both Pandora and in situ) in the early stage of the pandemic is still statistically significant. By implementing the new wind‐based validation method, the high‐resolution satellite instrument (TROPOMI) can also capture the local NO2 emission pattern changes to a good level of agreement with the ground‐based observations. The bias between ground‐based and satellite observations during the pandemic was found to have a positive shift (5–12%) than the bias during the pre‐pandemic period. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

SELECTION OF CITATIONS
SEARCH DETAIL